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OSCILLATIONS IN THE PLASMA SHEATH1^ 

by 

Simon H.  Schwartz 

Polytechnic Institute of Brooklyn 

SUMMARY 

The behavior of the ion plasma sheath next to a wall is investigated under a 

sinusoidal-in-time perturbation of the potential of the wall.    A collisionless sheath is 

assumed,  and the ion density distribution is considered to remain at the steady state 

value, with only the electron distribution being perturbed.    The collisionless macro- 

scopic plasma equations are solved by a perturbation procedure,  using an exact equa- 

tion for the steady state potential distribution.    A second order differential equation 

which is linear,  but which has variable coefficients is obtained for the perturbation. 

This equation is transformad into the form of a wave equation with variable propaga- 

tion constant so that the analytical behavior can be deduced.    One observes that above 

a certain range of frequencies,  but below the plasma frequency of the uniform plasma, 

the perturbation may propagate over a finite region which may begin away from the 

wall. 

A numerical integration of the equation is performed,  using an asymptotic 

approximation in order to obtain the boundary conditions.    The predicted oscillations 

+ 
This research has been conducted in part under Contract No.  Nonr 839(38) for 
PROJECT DEFENDER,  and was made possible by the support of the Advanced 
Research Projects Agency under Order No.   529 through the Office of Naval Research. 

Research Associate 



aire seen to occur,  and two resonances in the sheath are found at frequencies below 

the plasma frequency. 
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SECTION I 

INTRODUCTION 

The physics of plasma adjacent to a boundary,  the so-called "plasma sheath" 

is not completely understood.    Yet boundary phenomena play an essential role in 

numerous well-known situations, for example,  those associated with Langmuir Probes, 

resonance probes and communication antennae. 

A few of the numerous papers dealing v/ith the steady-state behavior of the 

sheath are listed in the bibliography.    With respect to time-dependent behavior,  experi- 

mental studies of natural oscillations in the sheath have been performed by Ga>.'      Ash, 

1 2 3 
and Dracott ,  by Ott,  Gierke and Schwirzke   ,  and by Harp and Kino   with co i- icting 

results.    The resonance probe employing applied oscillations has been studied by 

4 
Wimmel   ,  and the theory of the RF plasma sheath has been studied by Pavkovich and 

5 6 
Kino    and Pavkovich   .    The latter approach the problem theoretically by integrating 

the collisionless Boltzmann equation numerically,  assuming a parabolic steady-state 

potential distribution,  a harmonic time-wise perturbation in the plasma and in the 

consistent boundary conditions,and a tinie-independent perturbation amplitude.    They 

reach the conclusion that no spatial oscillations about zero electric field are possible 

in the sheath when the electron density distribution is Maxwellian.    The behavior of 

temporally amplified or damped perturbations is not included in their studies. 

Pavkovich    also investigates a theory similar to the one to be set forth in this paper, 

i. e. ,   a fluid dynamical approach,   but with a parabolic potential distribution.    However, 

he discounts it because of the possibility of waves (spatial) near the walls.    Moreover, 

1 



on the basis on an examination of the so-called "sheath impedance",  he decides that 

no oscillations are possible,   at least in the numerical cases ronsidcrcd. ' 

In the present paper,  an ion plasma sheath next to a solid boundary is con- 

sidered.    This boundary can be considered to be insulated with respect to ground; 

such a boundary is termed "floating".   It is well- known that the plasma region ad- 

jacent to a floating wall is characterized by a large potential drop.    In particular, 

a large negative potential and negative surface charge is created,  since the electrons 

of the plasma are more mobile than the ions and diffuse to the wall more readily.    The" 

resulting preponderance of ions and the associated positive space charge in this neigh- 

borhood suggest th    designation "ion sheath". 

The plasma sheath is assumed to be subjected to a temporally oscillatory 

perturbation of the surface potential.    The amplitude of this oscillation is assumed to 

be time-wise invariant both at the boundary and in the plasma.    In another view we may 

consider the oscillation to have appeared in .he plasma, whereas the surface oscilla- 

tion follows as a result.    Finally,  this type of problem may be interpreted as an inves- 

tigation of the existence and spatial properties of a neutral disturbance (undamped and 

unamplified) consistent with the boundary conditions. 

In this paper,   it is assumed that collisior"- between charged particles within 

this sheath are negligible.    The collisionless nonlinear macroscopic plasma equations 

are taktr to be applicable here.    The equations are linearized by a perturbation method 

and an equation for the perturbation derived.    It is assumed that since the electrons 

are so much more mobile than the ions,  only the electron density distribution will be 

perturbed.    Under the conditions of this problem the electron energy equation can be 



integrated to give an adiabatic equation of state for the electron gas.    However, the 

value of the adiabatic exponent y is not specified at the outset, although it is clear that 

if the frequency is high enough, there will be insufficient time for equipartition of 

energy between the cgrees of freedom so that y = ^» while for low frequencies Y B T 

is the correct value. 

In this particular analysis a plane wall is treated and spatial variations in only 

one direction are considered,  so that the problem is one-dimensional. 

SECTION II 

BASIC EQUATIONS 

The basic equations of the problems are; 

du 
— = -^ n    E    --Vp 

e  at        me —       me 

V • E   = -^ (n    - n.) 
—       e     * e       i 

o 

(1) 

(2) 

-Y p n        = const, 
e  e 

(3) 

_ ÖE s, 
VxH = C     —   -n      qu' 

—        o  ?)t e       — 
o 

(4) 

VxE  = •ii 

dH 

o "at" (5) 

where  u    is the electron velocity,   E    is the total electric field, p    is the total election 

pressure,  n   and n. are the total electron and ion number densities respectively,   E 
e i 

and H   are the perturbation electric and magnetic fields,   Y is the adiabatic exponent. 



and n       is the steady state electron number dene4*'/.    Equation (3) is used since one 
o 

is concerned with high frequency oscillations and because in this case the energy equa- 

tion can be solved to obtain the adiabatic equation of state.    In Eq.   (1) the nonlinear 

acceleration term u    • 7u    is left out since it is assumed to be small compared with 

the time derivative.    In this set of equations  u    is a perturbation already,  since the 

steady state velocity is zero for an ion sheath (the electrons are reflected back in the 

negative potential so that their average velocity if zero). 

« * — _ 
Now,  let E    and n     be perturbed so that   E    = E    + E   and n   = n      + n where 

e ^ —       —o      — e       e 
E -      ■ 

h^H <<1   and I 1   « 1 where E   and n      are the steady state solutions and E and 
hi n —o e — 

—  0 e 0 

n are the perturbations.    If this perturbation is substituted in Poisson's equation,  Eq. 

(2),  it becomes 

V • (E    + E) = za-(n     +n^n.). (6) 
—o     —       sei 

o o 

The steady state Poisson1^ equation is 

V • E    = ^ (n     -n.) (7) 
—o      e        e        i x 

o        o 

In the one-dimensional case this equation becomes (see Appendix) 

(||)   = 2V1-29+ 2efi-4 (8) 

qcp x dcp 
where  6= f±r- ,  f = -— , where E    = -— and  X,   is the Debye lenpth referred to un- 

kT A, o        dx d c 

e   kT 
disturbed plasma,    Xs, =  .    Here,   T    is the electron temperature of the un- 

o „ o 
noq 

disturbed plasma and k is the Boltzmann constant.    Thus,  Eq.   (6) becomes 

dE      -q  - ,„. 
dx      e 

o 



Let the adiabatic equation of state Eq.  (3) be examined more closely 

-Y -Y 1-V 
P0

n
0      * P    n       - '*T n     r (10) e  e re    e o e v     ' 

o    o o 

where pe    = n      kT^  is the isothermal equation of state and holds for steady state, 
o o 

o 

Now,  let one substitute the perturbation into (10a).    Then (10a) becomes 

P.= kTX"Y n Y<1+   r1"^3 kT n      (1 +-^-) = kT n    +ykTn        (11) e oee n oe n oeo 
o        o e o e o 

o o 

Vp    = kT   7n      +YkT   Vn (12) 
e o     e o v    * o 

1 1 _      YkT     _      kT - 
— 7p    =    7 7=: (kT   Vn     +YkT   Vn) = ^ Vn  +  (1 - —2-)Vn (13) 
n       re        (n    +n) '     o     e o n n       *        n    '     e l 

e ' e        ' o "e "e "e eo 
o o o o 

i 

I 
With Eq.   (13),  Eq.   (1) becomes 

Su _       ykT kT - 
mTr =  -q^E    . E) - —^   VH-  (I -   -2-)Vn (14) «t —o   —       n n n e 

e ceo o o o 

,   *       -qn qn     E Vn 
^u 4 e 4 e   -     YkT kT kT e 

0E    -—^ °Vn._°vn      +—2--2r (15) 
e   9t m       —o        m m m        e m   n 

o o e 
o 

n 

The steady state momentum equation is 

-qn    E n e —o kT 
 0 0 Vn      = 0 (16) m me 

o 



which has a solution 

3J£. 
kT 

n    = n  e 
e       o 

where  E^ = - Vcpand ^ is the value of the electron density at cp = 0 . 

Thus,  ISq.   (15) becomes 

jium    eo—     jo)       m juü  m   n 
o 

= juje   E + e   T-
2

- E + -^ vn - 
o —      o j a' —    j uu 

YkT                       %  q3 

hcrr   in  - —   0   ^njl mi2        9.- 

Vn 
a^q        eo 
Yju;    ne 

o 

m              pern 
o 

(17) 

aüV        _ _     YkT . kT Vne 
n _ iL    _ T?        O _—   , O  O   — 
"e^t   -      mne    £--^r*n+—  « (18) 

o o e 

(18a) 

which with the   eJ      time dependence becomes 

a YkT kT     Vne 
j^"     ü = ^n      E ^Vn+ 2   on eo ^    eo-        m m    ne 

o 

SECTION m 

DERIVATION OF PERTURBATION EQUATION FOR E 

Let one substitute Eq.   (14a) into Maxwell Eq.   (4). 

V*n*im    E+      qS ■     q     YkTo q^o^o 
— o~      ■:—  n     E+  T

1
-    ^ vn -   -3-— ^n nq^ luum    e   —      mi        m im   m    r, n Viy/ 

(19a) 



Vn 

jU)VxH= - e  (t^-u^E + aSqVn--^/ 2) n o p  —        -i Y     n 
e 

o 
Making use of Eq.   (18),  this becomes 

(19b) 

€  a«'        e 
ju)VxH= -€o(uü2-u)y E - €oaSv(vE) +-2—{  )v • E (19c) 

Now, we can make use of the vector identity 

V(V • E) = Vx (VxE) + V • (VE) (19d) 

2      Vn 

jujVxH= - e (ou3-ui)f) E - e a^Vx(VxE) - e a2 v. (vE) +-2—(—2-)vE 
op o o — Y       n — 

e 
o 

which by Eq.   (5) becomes 

Vn 

(19e) 

jwvxH = - eo(a'2 - üü^) E + e^j^VxH - e^ v • (vE) + — { Z) v-E       (19f) 

e 
o 

If one assumes that H = 0, this becomes 

Vn 
G   a'        e 

e   (UU
S
-Uü

2
)E - e a2 v(vE) +-2—( -) v • E = 0 o p—      o '  —'       Yn       ' v    S     u 

which can be written in the form 
Vn 

■       e                     u)s-U)'' 
V • (V E) - -  v • E + ( 2. ) E = 0 

(20) 

(20a) 

In the one-dimensional case this becomes 

d^E     1       eo   dE   ,  /'''"D , 
T- + ( B-)E=0 

dx^ 
Y   n dx (21) 



In terms of the nondimensional variable  C this becomes 

Vn 2        2 

,_3       n o^ _ 
d| e (Ds 

o o 

Xd               eom         1 where      =     =    and  U)   is the plasma frequency of the uniform plasma. 
as Yn0q8 y^ 0 

Equations (21) and (ZZ) are the perturbation equations for E.    Eqs.   (21) and (22) imply- 

that the electrons move in a field of force which is due to the steady state electric 

field caused by the non-uniform density distribution. 

SECTION IV 

TRANSFORMATION OF THE PERTURBATION EQUATION 

Equation (21) can be written in the form 

^- 2f(x)^ +g(x)E = 0 (23) 
dx2 

where f(x) and g(x) are given by 
Vn „a 

e U)?-Uü2 

'W = I7T^«W E- 
e 

o 
.2 

Assume a solution to (23) of the form 

E(x) = y(x) h(x) (24) 

where h(x) is given by 
x 
[    f(x)dx 

h(x)= eJXo . (24a) 

If (24) is substituted into (23),the following differential equation is obtained 



dx2 
+ Y(x) y = 0 (25) 

where Y(x) is given by 

Y(x) = f + g-P   . (26) 

When the definitions of f and g are substituted into Eq.  (26),   ^(x) becomes 

uu2 

d^n- 
UJ^-U)2 

a2 T   dx? uu3      4YP 

o 

(27) 

where 

Vn 
e Vuu 

o uu 
0      V ^n -£ 

a 
_£ 
UÜ 

uu' 

Now let one nondimensionalize   Y(x) and Eq.  (25) .    Equation (25) becomes 

+ \z   Y(x) y = 0 
d 

d5 

and if one defines ^(5) = \?   * (x),  then this becomes 

+ f(!rJ y = 0 
dV 

(28) 

(28a) 

1'(?) = 
^p    ,1      d2   ,    Ü 

d-tn 

YUJ' 
2Y    df U): 4Y' 

d? 
(29) 



Since  —°a e   ,   Y(?)   can be written as 
3 ttl 
O 

U) 2-U) 
1    dse      1   ,d9v3 

T<5) ^^^--1^ .      ("" 
YUJS d?*     4Y 

o 

The integration of Eq.  (17) giving 9 vs ? , is shown in Fig.  1.    The plot of Yvs § for 

5 
values of yof — and 3 is shown in Fig.  2 

If the value of f(x) is substituted into 

:) dx Jf(x) 
e o = h(x) , 

it becomes x 6-9 
Jf(x)dx     -~   . (30) 

e h(x) =   e o = e 
-   _o 

e is just an arbitrary multiplicative constant,  so that the solution for E can be 

given by - 

E = yh = ye   2Y (31) 

SECTION V 

RESULTS 

Since h(x) is a monotonically increasing function from the wall (negative  9) 

to the sheath edge (6 = 0),  one sees that the behavior of E is determined by the be- 

havior of y.    The equation for y is given by (28a), which is recognized as a type of 

wave equation.    If Y(?)   were constant and positive, wave solutions and hence propaga- 

tion of the perturbation would be possible.    If Ywere constant and negative, the solu- 

tion would be a damped or growing exponential.    The same type of behavior is expected. 

10 



although modified slightly,   by the solutions if ¥ is a variable.    Fig.   2 makes it clear 

that y indeed does become positive for a finite range of  P. 

One particularly interesting effect due to this behavior of Y is that the pro- 

pagation is cut off near the wüll where the local plasma frequency is very small. If Eq. 

{29a) is considered under the assumption that  6 is a large negative value,  then 

—K «0  and   sa 0, so that f (5) becomes 

o 

*(?)^    -   -^(f)8 (32) 
YUJa 4Y2 

o 

d^ and Y(?) can then become negative for an appropriately large — and a cutoff can take 

dfi 
place.    Since ~ is related to the electric field,  this result is not surprising in view 

of the fact that the electron gas is in equilibrium with the electric field E  ,  and this 

effect is analogous to what is found in an atmosphere which is in equilibrium with a 

gravitational field. 

In view of the complexity of Eq.   (28a),   this equation had to be solved numerical- 

ly.    Ii   order to do this,   y(?) was approximated for large values of  ?(fl~,0) by a constant 

and the damped exponential solution for y  was chosen,   so that the perturbation would 

go to zero at infinity as it should.    Then the equation was integrated backwards from 

this starting point at a large value of  ?(F= 36 to be exact) to the wall.    This was done 

for the ranee of frequencies of   — from 0 to 1 and for both values of y.    The results 
o 

for  Y= 3 are shown in Fig.   3.    It is seen that an oscillation does indeed occur,   and also 

that two resonances occur. 

11 



SECTION VI 

CONCLUSIONS 

The results of this analysis show that the resonances in the sheath occur at 

frequencies below the asymptotic plasma frequency.    It is of interest to observe that 

they occur in a relatively narrow range below  Uu   .    Only two resonances are found. 
o ' 

one at about — « 0. 75 and another at  — « 0. 95.    In the limit of — « 1,  the unperturbed 
o "o "o 

plasma appears,  and for larger values of   —   only a continuous spectrum of frequencies 
o 

may occur.    These results appear to be in agreement with the experimental behavior 

of the Resonance Probe. 

A further examination,  including the effect of collisions,  is in the process of 

being carried out. 
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APPENDIX 

Poisson's equation for the steady state distribution is given as 

dE 
-r9=^{n     -n.) dx       c        e       i 

o Ü 
(A-l) 

or in terms of CD this is 

dfcß _   _ä_ 
(n     -nj 

e        e       i dx3 o        o 

kT J: K ± 1 
We know that n    = n e and we can say that n. =— .    u   is eiven bv 

e        o. '              i   qu.         i       s            7 

o ^  i 

(A-2) 

ui=v^r 
'      o 

m CO 

where we assume that CD = 0  at the sheath edge and  u.    is the ion velocity at the sheath 

edge.    By the Böhm criterion for a stable sheath,  u.      can be replaced by 

ui -J-z o     V   m Then Eq.   (A-2) becomes 

d5 CD 

dxs 
-^ n   (e 
e       o o /TzF 

(A-3) 

or in terms of the nondimensional distance  5 

d29        e 

d?^ ruzf 
d9 

(A-4) 

If we integrate(A -4)and apply the boundary condition that 8=0  at — = 0,    then 
d? 

this becomes 

d3 P 6        i  
(—) ' = 2e   + 2V1-29   -4   . as (A-5) 
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